24,799 research outputs found

    Practical Advantages of Almost-Balanced-Weak-Values Metrological Techniques

    Get PDF
    Precision measurements of ultra-small linear velocities of one of the mirrors in a Michelson interferometer are performed using two different weak-values techniques. We show that the technique of Almost-Balanced Weak Values (ABWV) offers practical advantages over the technique of Weak-Value Amplification (WVA), resulting in larger signal-to-noise ratios and the possibility of longer integration times due to robustness to slow drifts. As an example of the performance of the ABWV protocol we report a velocity sensitivity of 60 fm/s after 40 hours of integration time. The sensitivity of the Doppler shift due to the moving mirror is of 150 nHz

    On Asymptotic Optimality of Dual Scheduling Algorithm In A Generalized Switch

    Get PDF
    Generalized switch is a model of a queueing system where parallel servers are interdependent and have time-varying service capabilities. This paper considers the dual scheduling algorithm that uses rate control and queue-length based scheduling to allocate resources for a generalized switch. We consider a saturated system in which each user has infinite amount of data to be served. We prove the asymptotic optimality of the dual scheduling algorithm for such a system, which says that the vector of average service rates of the scheduling algorithm maximizes some aggregate concave utility functions. As the fairness objectives can be achieved by appropriately choosing utility functions, the asymptotic optimality establishes the fairness properties of the dual scheduling algorithm. The dual scheduling algorithm motivates a new architecture for scheduling, in which an additional queue is introduced to interface the user data queue and the time-varying server and to modulate the scheduling process, so as to achieve different performance objectives. Further research would include scheduling with Quality of Service guarantees with the dual scheduler, and its application and implementation in various versions of the generalized switch model

    Random Access Game and Medium Access Control Design

    Get PDF
    Motivated partially by a control-theoretic viewpoint, we propose a game-theoretic model, called random access game, for contention control. We characterize Nash equilibria of random access games, study their dynamics, and propose distributed algorithms (strategy evolutions) to achieve Nash equilibria. This provides a general analytical framework that is capable of modeling a large class of system-wide quality-of-service (QoS) models via the specification of per-node utility functions, in which system-wide fairness or service differentiation can be achieved in a distributed manner as long as each node executes a contention resolution algorithm that is designed to achieve the Nash equilibrium. We thus propose a novel medium access method derived from carrier sense multiple access/collision avoidance (CSMA/CA) according to distributed strategy update mechanism achieving the Nash equilibrium of random access game. We present a concrete medium access method that adapts to a continuous contention measure called conditional collision probability, stabilizes the network into a steady state that achieves optimal throughput with targeted fairness (or service differentiation), and can decouple contention control from handling failed transmissions. In addition to guiding medium access control design, the random access game model also provides an analytical framework to understand equilibrium and dynamic properties of different medium access protocols

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of ā€œlayering as optimization decompositionā€ for time-varying channel models

    Stochastic Modeling of Hybrid Cache Systems

    Full text link
    In recent years, there is an increasing demand of big memory systems so to perform large scale data analytics. Since DRAM memories are expensive, some researchers are suggesting to use other memory systems such as non-volatile memory (NVM) technology to build large-memory computing systems. However, whether the NVM technology can be a viable alternative (either economically and technically) to DRAM remains an open question. To answer this question, it is important to consider how to design a memory system from a "system perspective", that is, incorporating different performance characteristics and price ratios from hybrid memory devices. This paper presents an analytical model of a "hybrid page cache system" so to understand the diverse design space and performance impact of a hybrid cache system. We consider (1) various architectural choices, (2) design strategies, and (3) configuration of different memory devices. Using this model, we provide guidelines on how to design hybrid page cache to reach a good trade-off between high system throughput (in I/O per sec or IOPS) and fast cache reactivity which is defined by the time to fill the cache. We also show how one can configure the DRAM capacity and NVM capacity under a fixed budget. We pick PCM as an example for NVM and conduct numerical analysis. Our analysis indicates that incorporating PCM in a page cache system significantly improves the system performance, and it also shows larger benefit to allocate more PCM in page cache in some cases. Besides, for the common setting of performance-price ratio of PCM, "flat architecture" offers as a better choice, but "layered architecture" outperforms if PCM write performance can be significantly improved in the future.Comment: 14 pages; mascots 201
    • ā€¦
    corecore